
PID Control

Proportional-Integral-Derivative (PID) controllers are one of the most commonly used types of 

controllers. They have numerous applications relating to temperature control, speed control, 

position control, etc. A PID controller provides a control signal that has a component 

proportional to the tracking error of a system, a component proportional to the accumulation of 

this error over time and a component proportional to the time rate of change of this error. This 

module will cover these different components and some of their different combinations that can

be used for control purposes. 

Fig. 1: System block diagram with feedback control

(This command loads the functions required for computing Laplace and Inverse Laplace transforms. For more information on Laplace 

transforms, see the Laplace Transforms and Transfer Functions module.)

Proportional Control (P)

A proportional controller outputs a control signal  that is proportional to the error signal 



... Eq. (1)

where  is the proportional gain. In the Laplace domain, this can be written as

... Eq. (2)

First order systems with P control

The characteristic form of the transfer function of a first order plant is

... Eq. (3)

where  is the time constant and  is the DC Gain. With P control, the closed loop 

transfer function of the system is

... Eq. (4)

(This can be obtained using  where  is the controller transfer

function and  is the plant transfer function. See the Block Diagrams, Feedback and 

Transient Response Specifications module for more information.) 

This transfer function is still a first order transfer function and can be written as



... Eq. (5)

 

Comparing Eq. (5) with Eq. (3), the closed loop time constant is

... Eq. (6)

This shows that proportional control can be used to alter the rise time and settling time of

a first order system. 

Using Eq. (5) with a step input of magnitude , the steady-state error for a first order 

system with proportional control is

... Eq. (7)

This shows that the steady state error can be reduced by increasing the gain. However, 

to achieve zero steady-state error, the gain would have to approach infinity. Therefore, 

for a first order system, a proportional controller cannot be used to eliminate the step 

response steady state error. 

The following plot shows the response of a system with a plant transfer function 

 to a unit-step input. 
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Second order systems with P control

The characteristic form of the transfer function of a second order plant is

... Eq. (8)

where  is the damping ratio and  is the natural frequency. With P control, the closed 

loop transfer function of the system is



... Eq. (9)

Comparing Eq. (9) with Eq. (8), the closed loop natural frequency and damping ratio are

... Eq. (10)

and

... Eq. (11)

 

This shows that as  is increased, the natural frequency increases and the damping 

ratio decreases which results in larger and faster oscillations. Since the rise, settling and 

peak times all depend on both of these parameters it is possible to alter them by 

adjusting . The same applies for the maximum overshoot which depends on the 

damping ratio. 

With a step input of magnitude , the steady-state error for the closed loop transfer 

function is

... Eq. (12)

This shows that the steady state error can be reduced by increasing the gain. However, 

similar to the proportional control of a first order system, zero steady-state error would 

require the proportional gain to approach infinity. Therefore, for a second order system, a

proportional controller cannot be used to eliminate the step response steady state error. 

The following plot shows the system response of a system with a plant transfer function 



to a unit-step input . 
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As can be seen, since all these parameters depend on , the control on the system 

response specifications is limited. For example, this type of a controller does not allow 

both the steady-state error and the maximum overshoot to be reduced at the same time. 

Integral Control (I)

An integral controller outputs a control signal  that is proportional to the integral of the 



error signal :

... Eq. (13)

where  is the integral gain. In the Laplace domain, this can be written as

... Eq. (14)

The integral component of a contoller provides a signal based on how long an error persists.

It works to prevent this persistance of an error by increasing the control signal with time. 

This helps reduces the steady state error and in some cases, depending on the type of 

system and the type of reference signal, eliminates it. I control is usually not used on its 

own, however it is more effective than P control for eliminating the step response steady-

state error of a first order plant. For a second order plant, using I control leads to a third 

order system that, depending on the system parameters, can result in unstable oscillations. 

First order systems with I control

With I control, the closed loop transfer function of a first order system is

... Eq. (15)

This can be written as



... Eq. (16)

Therefore, the equivalent natural frequency and damping ratio are

... Eq. (17)

and

... Eq. (18)

Also, with a step input of magnitude , the steady-state error is

... Eq. (19)

This shows that integral control can be used to eliminate steady state error for a step 

input and have control over the response characteristics. Once again, similar to the case 

of P control for a second order system, since all the response specifications depend on 

the controller gain , it is not possible to control them independently. For example, it is 

not possible to reduce the rise time and maximum overshoot simultaneously. 

The following plot shows a comparison of the unit-step responses of a first order system 

with proportional control and with integral control (plant transfer function: ). 



Derivative Control (D)

A derivative controller outputs a control signal  that is proportional to the time derivative

of the error signal :

... Eq. (20)

where  is the derivative gain. In the Laplace domain, this can be written as 

... Eq. (21)



The derivative component of a controller helps reduce overshoot. It is used to reduce the 

rate of change of the tracking error in order to prevent overshoot due to the inertia of the 

system. Derivative control is not covered in more detail by itself because it does not track 

error, only the rate of change of it. 

Proportional Integral Control (PI)

PI control is a combination of proportional and integral control:

... Eq. (22)

In the Laplace domain this can be written as

... Eq. (23)

First order systems with PI control

With PI control, the closed loop transfer function of a first order system is

... Eq. (24)

This results in a second order system that can be written as



... Eq. (25)

so the equivalent natural frequency and damping ratio are

... Eq. (26)

and

... Eq. (27)

The steady state error for a step input of magnitude  is

... Eq. (28)

This shows that proportional-integral control eliminates the step response steady state 

error and allows for more control over the transient response (compared to only P or only

I control) because both the damping ratio and natural frequency can be altered using the 

gains. For example, it is now possible to reduce the rise time and maximum overshoot 

simultaneously. 

The following plot shows a comparison of the unit-step responses of a first order system 

with proportional control, integral control and proportional-integral control (plant transfer 

function: 



). 

Second order system with PI control

With PI control, the closed loop transfer function of a second order system is

.. Eq. (29)

This is now a third order system with a zero. For a step input of magnitude , the steady 

state error is 

... Eq. (30)



This is an improvement over the other types of controllers discussed so far. Since the 

transfer function is a third order system and has a pole, it requires other methods like 

dominant pole analysis and root locus methods to analyze. It can also be tuned using 

approximate trial and error approaches to achieve the desired characteristics (use sliders

below).

The following plot shows a comparison of the unit-step responses of a second order 

system with proportional control and proportional-integral control (plant transfer function: 

). 

As can be observed, the control over the response is still limited.

Proportional Derivative Control (PD)

PD control is a combination of proportional and derivative control:



... Eq. (31)

In the Laplace domain this can be written as

... Eq. (32)

First order systems with PD control

With PD control, the closed loop transfer function of a first order system is

... Eq. (33)

This results in a modified first order system with a zero that can be written as

... Eq. (34)

In this case, the steady state error for a step input remains the same as the steady state 

error with pure proportional control. There is no significant value added by including the 

derivative control.

Second order systems with PD control

With PD control, the closed loop transfer function of the system is



... Eq. (35)

This is now a second order system with a zero. The step response steady state error is 

the same as with proportional control:

... Eq. (36)

For the design of such a system, the transfer function can be reduced to a second order 

system by ignoring the effect of the zero and calculating estimates for the required gains 

to meet the desired specifications. Then the response can be plotted and the gains can 

be tuned using a trial and error approach until the specifications are met. As can be seen

from the transfer function, PD control allows for both the damping ratio and natural 

frequency to be controlled separately. For the approximate second order system, the 

natural frequency and damping ratio are

... Eq. (37)

and

... Eq. (38)

The following plot shows a comparison of the unit-step responses of a second order 

system with P control and PD control (plant transfer function: ). 



PID Control

PID control is a combination of proportional, integral and derivative control:

... Eq. (39)

In the Laplace domain this can be written as

... Eq. (40)



First order systems with PID

With PID control, the closed loop transfer function of a first order system is

... Eq. (41)

This results in a second order system with two zeros and can be written as

... Eq. (42)

The additional derivative term does not provide significant benefit over a PI controller and

results in an increase in complexity.

Second order system with PID

With PID control, the closed loop transfer function for a second order system is

... Eq. (43)



or

... Eq. (44)

This is a third order system with two zeros. The three gains give complete control over 

the three poles of the system which means that this type of controller can be used to 

control the response characteristics better than the other types of controllers mentioned 

in this module. 

With a step input of magnitude , the steady-state error for the closed loop transfer 

function for is

... Eq. (45)

With a ramp input of solpe , the steady-state error for the closed loop transfer function 

for is

...Eq. (46)

The following plot shows a comparison of the unit-step response of a second order 

system with P, PD, PI and PID control (plant transfer function: ). 

P I D



The following plot shows a comparison of the unit-ramp responses of a second order 

system with P, PD, PI and PID control (plant transfer function: ). 

P I D



Example 1: PID Motor speed control

Problem Description: The DC motor of a cooling fan has the following specifications:

Table 1: Motor specifications

Parameter Value

Back-EMF constant,  
[V$s/rad]

Internal resistance,  [ ]

Internal inductance, [H]

Rotor moment of inertia,  [kg$m2]

The total moment of inertia of the fan blades is  kg$m2 and the viscous resistance due to

air resistance and bearing friction can be estimated as  N$m$s/rad. This system receives

an input signal with the required rotational speed. Determine values of the controller gains 

of a controller that ensure that the maximum overshoot is less than 1%, the step response 

steady-state error is 0, the rise time is less than 0.1 seconds and the 1% settling time is less

than 2 seconds.

Solution

Data:

[V$s/rad]

[ ]

[H]

[kg$m2]

[N$m$s/ra
d]



The equivalent circuit of the motor consists of a voltage source, a resistor, an inductor 

and a "back EMF" voltage source: 

Fig. 2: DC Motor model

The back EMF depends on the rate of rotation and can be expresses as

where  is the back-EMF constant and  is the angular speed. The torque on the rotor

is proportional to the armature current  and can be expresses as 

The dynamic equation for the circuit is

where  is the input voltage,  is the resistance of the resistor and  is the inductance 

of the inductor. The Laplace transform of this equation is

... Eq. (47)



(7.1.1)(7.1.1)

The dynamic equation for the rotor is

where  is the moment of inertia of the rotor and  is the damping constant. The Laplace 

transform of this equation is

... Eq. (48)

Combining Eqs. (47) and (48) and eliminating  yields

This equation can be rearranged to obtain the plant transfer function:

With the specifications given in the problem statement, the transfer function is

The next step is to determine the gains of a suitable controller. To be able to achieve a 

steady state error of zero for a step input, and be able to control both the rise time and 

maximum overshoot, the controller has to be a PID controller. The integral component is 

required to eliminate the steady-state error and the proportional and derivative terms give

control over the rise time and the maximum overshoot. The controller transfer function is



(7.1.3)(7.1.3)

(7.1.2)(7.1.2)

and the closed loop transfer function is

This is a third order system with two zeros. There are many different methods that are 

used for PID design. Here we will use a method that first involves calculating estimates 

for the controller gains by setting   and then using a trial and error approach to fine 

tune these gains to achieve the specifications. If we set  the closed loop system 

reduces to a second order system with a zero:

Eq. (49)



(7.1.5)(7.1.5)

(7.1.7)(7.1.7)

(7.1.4)(7.1.4)

(7.1.6)(7.1.6)

If we ignore the effect of the zero, the damping ratio required for a maximum overshoot 

of 1% can be calculated:

 

0.8260850546

Similarly the natural frequency required for a rise time 0.1 sec can be calculated:

26.46379339

Using these values, the denominator of a second order transfer function that meets the 

overshoot and rise time specifications is:

Equating this to the denominator of Eq. (49), we get

This equation can be used to solve for  and  :

0.5602882356

and 



(7.1.8)(7.1.8)18.12968014

These values are the estimates that can be used as a starting point to obtain the 

required controller gains using an iterative approach. The integral term eliminates the 

steady-state error for a step input and it's magnitude determines the settling time. 

Therfore the value of the integral gain can be increased until the settling time 

specification is met and then the other gains can be adjusted to ensure that the 

remaining specifications are also met. Using the gauges below, it can be found that the 

specifications are met if , , and .   

P I D

With MapleSim

Constructing the model



Step 1: Insert Components

Drag the following components into the workspace:

Table 2: Components and locations

Component Location

Signal Blocks
> Common

Signal Blocks
> Common

Signal Blocks
> Common

Signal Blocks
> 

Mathematical
> Functions

Signal Blocks
> Common

Signal Blocks
> 

Mathematical
> Operators



Electrical > 
Analog > 
Sources > 
Voltage 

Electrical > 
Analog > 
Common

Electrical > 
Analog > 
Common

Electrical > 
Analog > 
Common

Electrical > 
Analog > 
Common

1-D 
Mechanical >
Rotational > 

Common

1-D 
Mechanical >



Rotational > 
Common

1-D 
Mechanical >
Rotational > 

Common

1-D 
Mechanical >
Rotational > 

Sensors

Step 2: Connect the components

Connect the components as shown in the following diagram (the dashed boxes are 

not part of the model, they have been drawn on top to help make it clear what the 

different components are for):



2. 2. 

2. 2. 

1. 1. 

3. 3. 

5. 5. 

4. 4. 

1. 1. 

2. 2. 

1. 1. 

Fig. 3: Component diagram

Step 3: Set up the controller

Click the Gain component and enter the estimated  value calculated in the 

previous sub-section for the gain value ( ). 
Click the Derivative component and enter the estimated  value calculated in 

the previous sub-section for the gain ( ).

Step 4: Set up the plant

Click the Resistor component and enter 0.55  for the resistance ( ).

Click the Integrator component and enter 0.025  for the inductance ( ). 
Click the Rotational EMF component and enter 0.085  for the

Transformation Coefficient ( ).
Click the Inertia component and enter 0.09  for the moment of inertia ( ).
Click the Rotational Damper and enter 0.05  for the Damping constant (

).

Step 5: Run the simulation

Attach a Probe as shown in the diagram.

Click the probe and select Speed in the Inspector tab. 



4. 4. 

3. 3. Click Run Simulation ( ).

Use a systematic trial and error approach to determine a combination of 

controller gains that satisfy the requirements.

To further study the behavior of the system, the input can be changed from a step input 

to one of the various other inputs (sinusoidal, pulse, ramp, etc.) available under Sources 

in the component library. 

For example, the following plot shows the system response to an offset sinusoidal input 

with the gains set such that they meet the problem specifications.

Fig 4: MapleSim plot of the response to an offset sinusoidal input - Angular speed (rad/s) vs. time (sec) 

Also, if a CAD model is available, it can be used for visualization as shown below. 

Fig. 5: Component diagram including a CAD attachment



3. 3. 

The following video shows the system response for an offset sinusoidal input with a CAD

model of the fan blades attached. 

Video Player

Video 1: MapleSim visualization of the response to an offset sinusoidal input.

Reference:
G.F. Franklin et al. "Feedback Control of Dynamic Systems", 5th Edition. Upper Saddle River, 
NJ, 2006, Pearson Education, Inc.



3. 3. 


